

Welcome to Morphops!

Morphops implements common operations and algorithms for Geometric
Morphometrics, in Python 3.

[image: Build status]
 [https://github.com/vaipatel/morphops/actions/workflows/build.yml][image: Documentation Status]
 [https://morphops.readthedocs.io/en/latest/?badge=latest][image: PyPI version]
 [https://pypi.org/project/morphops]

Features

Some high-level operations in the current version are

	Centering, rescaling data:
remove_position(lmk_sets),
remove_scale(lmk_sets)

	Rigid Rotation, Ordinary and Generalized Procrustes alignment:
rotate(src_sets,tar_sets),
opa(src_set,tar_set),
gpa(all_sets)

	Thin-plate spline warping:
tps_warp(X, Y, pts)

	Reading from and writing to *.dta files:
read_dta(fn),
write_dta(fn,lmk_sets,names)

Dependencies

	numpy

Installation

pip install morphops

Usage Examples

import morphops as mops

Create 3 landmark sets, each having 5 landmarks in 2 dimensions.
A = [[0,0],[2,0],[2,2],[1,3],[0,2]]
B = [[0.1,-0.1],[2,0],[2.3,1.8],[1,3],[0.4,2]]
C = [[-0.1,-0.1],[2.1,0],[2,1.8],[0.9,3.1],[-0.4,2.1]]

Perform Generalized Procrustes alignment to align A, B, C.
res = mops.gpa([A, B, C])
res['aligned'] contains the aligned A, B, C. res['mean'] is their mean.

Create a Thin-plate Spline warp from A to B and warp C.
warped_C = mops.tps_warp(A, B, C)
warped_C contains the image of the pts in C under the TPS warp.

What is Geometric Morphometrics?

Geometric Morphometrics is a statistical toolkit for quantifying and studying
shapes of forms that are represented by homologous landmark sets.

“Shape” has a specific notion here. For a given landmark set, its shape refers
to the spatial information that survives after discarding its absolute
position, scale and rotation. So two landmark sets have the same shape if they
can be brought in perfect alignment by only changing their positions, scales
and rotations.

Common Operations and Algorithms in Studies

Geometric Morphometrics is often used when pursuing statistical questions
involving the morphology of biological forms, like do corvid species that
frequently probe have longer bills and more to-the-side orbits than corvid species that frequently peck [https://frontiersinzoology.biomedcentral.com/articles/10.1186/1742-9994-6-2].
It helps inform the Data Collection, Preprocessing and Analysis
steps of such statistical studies with sound theoretical or practical justifications.

Data Collection

The most prevalent form of Data Collection involves picking homologous
landmarks on each form. For curving forms with few homologous points but
well-understood homologous regions, there is a notion of semilandmarks which
can “slide” to minimize equidistant sampling artifacts.

A common file format for saving landmarks for a set of specimens is the *.dta
format used by the IDAV Landmark Editor software.

Preprocessing

As discussed before, a central idea in Geometric Morphometrics is extracting
the “shapes” of the landmark sets. One way to achieve this is to use the
Generalized Procrustes Alignment algorithm or GPA. GPA aligns all the landmark
sets by modifying their locations, orientations and sizes so as to minimize
their collective interlandmark distances.

After this step, the aligned shapes all lie in a high-dimensional non-linear
manifold. For example, if the orignal landmark sets were a set of triangles,
the aligned shapes lie on a sphere. Moreover, for naturally arising datasets,
the shapes likely lie very close to each other and are distributed around a
mean shape. This usually makes it permissible to project all the shapes into
the tangent space at the mean shape, and this way the final shape vectors lie
in a linear space.

Analysis

With the shapes lying in a high-dimensional linear space after preprocessing,
they can now be submitted to various commonly used statistical procedures like
Principal Components Analysis and various kinds of regression for further
analysis.

morphops module

The morphops module is the primary module of the Morphops library.

It contains implementations of common geometric morphometrics operations.
Some examples are -

	IO operations to read/write landmark data

	Common preprocessing like Generalized Procrustes Alignment

	Thin-plate spline warping operations

Submodules

	procrustes

	Provides procrustes alignment related operations and algorithms.

	tps

	Provides thin-plate splines related operations and algorithms.

	io

	Provides IO functions to read from and write to files in common landmark data file formats.

	lmk_util

	Provides common functions used in the module.

	
morphops.VERSION = '0.1.13'

	The version of this module.

Indices and tables

	Index

	Module Index

	Search Page

morphops.procrustes

Provides procrustes alignment related operations and algorithms.

For geometric morphometrics based studies, after landmark data are
collected for each specimen, a typical next step is to remove the position,
size and orientation information from the landmark set of each specimen so
that what remains is the shape information. This can be achieved by, for
example, running Generalized Procrustes Aligment (see gpa()) on the set
of landmark sets.

After procrustes alignment, the shapes lie in a high-dimensional non-euclidean
manifold but are usually quite close to each other and can be projected to a
euclidean tangent space at their shape mean, whereupon they can be subjected to
multivariate analysis techniques like Principal Components Analysis, Partial
Least Squares, etc.

	
morphops.procrustes.get_position(lmks)

	Returns the centroid of the set or sets of landmarks in lmks.

The centroid of a \(p\) landmarks is simply the arithmetic mean of all
the landmark positions. That is

\[\mathbf{x_c} = \sum_{i=1}^p \dfrac{\mathbf{x_i}}{p}\]

	Parameters

	lmks (array-like) – One of the following

	Single specimen A (p,k) array of p landmarks in k dimensions for
one specimen.

	n specimens A (n,p,k) array of n landmark sets for n specimens,
each having p landmarks in k dimensions.

	Returns

	centroid –

	If lmks is a (p,k) array, then centroid is a (k,)-shaped array,
whose i-th element is the mean of the i-th coordinate in lmks.

	If lmks is a (n,p,k) array, then centroid is a (n,k)-shaped
array whose i-th element is the (k,)-shaped centroid of the i-th
specimen’s landmarks in lmks.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
morphops.procrustes.get_scale(lmks)

	Returns the euclidean norm of the real matrix or matrices in lmks.

The euclidean norm of the real (p x k) matrix \(X\) is calculated as

\[\|X\| = \sqrt{Tr(X^T X)}\]

Note

lmks is not assumed to have been pre-centered. To pre-center lmks you
can call remove_position() on lmks before applying remove_scale.

	Parameters

	lmks (array-like) – One of the following

	Single specimen A (p,k) array of p landmarks in k dimensions for
one specimen.

	n specimens A (n,p,k) array of n landmark sets for n specimens,
each having p landmarks in k dimensions.

	Returns

	scale –

	Single specimen If lmks is (p,k)-shaped, scale is a float
representing its euclidean norm.

	n specimens If lmks is (n,p,k)-shaped, scale is an (n,)
-shaped array such that the i-th element is the euclidean norm of the
i-th specimen’s landmarks.

	Return type

	numpy.float64 or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
morphops.procrustes.get_ssqd(X)

	Alias for lmk_util.ssqd(X).

	
morphops.procrustes.gpa(X, tol=1e-05, max_iters=10, do_project=False, do_scaling=False, no_reflect=False, unitize_mean=False)

	Performs Generalized Procrustes Alignment to transform all the landmark
sets in X such that (a quantity proportional to) the sum of squared norms
of pairwise differences between all the landmark sets is minimized.

Say len(X) = n. gpa() tries to find

\[\operatorname*{argmin}_{\beta_i > 0,\ R_i \in O(k),\ \gamma_i \in \mathbb{R}^k } g(X) = \frac{1}{n} \sum_{i=1}^{n-1} { \sum_{j=i+1}^n {\| (\beta_i X_i R_i + \mathbf{1_k} \gamma_i^T) - (\beta_j X_j R_j + \mathbf{1_k} \gamma_j^T) \|^2}}\]

The Generalized (Procrustes) Sum of Squares or G is defined as

\[G(X) = \operatorname*{inf}_{\beta_i > 0,\ R_i \in O(k),\ \gamma_i \in \mathbb{R}^k } g(X)\]

The GPA algorithm, per [drymar], tries to iteratively rotate and scale the
landmark sets in X until the sum of squared differences is below tol.
While the algorithm should converge quite fast, it can be forced to stop
the minimization loop after max_iters number of iterations.

For an explanation of the other parameters, please see the Parameters
section.

Note

Re do_project and do_scaling: The projection used here is based on
[rohlf] and assumes that the aligned shapes are of unit centroid size,
which is not generally true when do_scaling is True. Consequently, if
both do_project and do_scaling are True, gpa() will issue a
warning, but proceed with the projection.

Note

Generally for opa(), \(OSS(X1, X2) \neq OSS(X2, X1)\).

In contrast to opa(), gpa() is symmetric for the input matrices
in that \(G(X1, X2) = G(X2, X1)\).

See also

rotate(), opa()

	Parameters

	
	X (array-like) – A (n,p,k)-shaped set of landmark sets that have to be aligned to each
other.

	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – The sum of squared differences value that will be considered “low
enough” by the iterative rotation and scaling. The iterations will
continue until tol has been achieved or max_iters is reached,
whichever comes first.

	max_iters (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of iterations that the iterative rotation and
scaling is allowed to run for. The iterations will continue until tol
has been achieved or max_iters is reached, whichever comes first.

	do_scaling (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, \(\beta_i = \frac{1}{\| X'_i \|}\), where
\(X'_i\) is the mean-centered \(X_i\). Else \(\beta_i\) is
calculated as per [tenb].

	do_project (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the final aligned landmarks are orthogonally projected to
the tangent space at the mean of aligned landmark sets mean,
using equation 1 in [rohlf].

	no_reflect (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether the best alignment should exclude reflection
(default is False, which means reflection will be used if it achieves
better alignment).

	unitize_mean (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether the mean of aligned landmark sets mean
should be rescaled to have unit centroid size.

	Returns

	result –

	aligned: numpy.ndarray

	A (n,p,k)-shaped set of aligned landmark sets.

	mean: numpy.ndarray

	A (p,k)-shaped array representing the mean of the procrustes aligned landmark sets aligned.

	b: numpy.ndarray

	A (n,)-shaped array representing the scaling factor
\(\beta_i\) by which the centered \(X'_i\) is scaled.

	ssq: numpy.float64

	This number represents the Generalized (Procrustes) Sum of Squares,
which is the infinimum of \(g\). Essentially,
the ssq is the result of plugging in the optimal \(\beta_i\),
\(R_i\) and \(\gamma_i\) into the \(g\) objective.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Warns

	UserWarning – If both do_project and do_scaling are True

References

	drymar

	Dryden, I.L. and Mardia, K.V., 1998. Statistical shape analysis.

	tenb

	Ten Berge, J.M., 1977. Orthogonal Procrustes rotation for two or
more matrices. Psychometrika, 42(2), pp.267-276.

	rohlf(1,2)

	Rohlf, F.J., 1999. Shape statistics: Procrustes superimpositions
and tangent spaces. Journal of Classification, 16(2), pp.197-223.

	
morphops.procrustes.opa(source, target, do_scaling=False, no_reflect=False)

	Performs Ordinary Procrustes Alignment to transform the landmark set
source such that the squared Euclidean distance between source and
target is minimized.

Say X=`source` and Y=`target` and do_scaling = True.
opa() tries to find

\[\operatorname*{argmin}_{\beta > 0,\ R \in O(k),\ \gamma \in \mathbb{R}^k } D^2_{\mathtt{OPA}}(X, Y) = \| Y - \beta X R - \mathbf{1_k} \gamma^T \|^2\]

If do_scaling = False, \(\beta = 1\). If no_reflect = True,
then just as in rotate(), opa() will force \(R \in SO(k)\).

The Ordinary (Procrustes) Sum of Squares or OSS is defined as

\[OSS(X, Y) = \operatorname*{min}_{\beta > 0,\ R \in O(k),\ \gamma \in \mathbb{R}^k } D^2_{\mathtt{OPA}}(X, Y)\]

Note

Generally for opa(), \(OSS(X1, X2) \neq OSS(X2, X1)\).

In contrast to opa(), gpa() is symmetric for the input matrices
in that \(G(X1, X2) = G(X2, X1)\).

See also

rotate(), gpa()

	Parameters

	
	source (array-like) – A (p,k)-shaped landmark set corresponding to the source shape.

	target (array-like) – A (p,k)-shaped landmark set corresponding to the target shape.

	do_scaling (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether the best alignment should also find the optimal
\(\beta\) that minimizes \(D^2_{\mathtt{OPA}}\). The default
value of do_scaling is False, which means \(\beta = 1\), or in
other words, source will not be scaled.

	no_reflect (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether the best alignment should exclude reflection
(default is False, which means reflection will be used if it achieves
better alignment).

	Returns

	result –

	aligned: numpy.ndarray

	A (p,k)-shaped landmark set consisting of the source landmarks
aligned to the target.

	b: numpy.float64 or int

	A number representing the scaling factor \(\beta\) by which
source is scaled.

	R: numpy.ndarray

	A (k,k)-shaped array representing the right rotation matrix
\(R\) by which source is rotated.

	c: numpy.ndarray

	A (k,)-shaped array representing the displacement \(\gamma\)
between the centroids of target and the scaled+rotated source.

	oss: numpy.float64

	This number represents the Ordinary (Procrustes) Sum of Squares,
which is the minimum of \(D^2_{\mathtt{OPA}}\). Essentially,
the oss is the result of plugging in the optimal \(\beta\),
\(R\) and \(\gamma\) into the \(D^2_{\mathtt{OPA}}\)
objective.

	oss_stdized: numpy.float64

	This number is the Ordinary Sum of Squares oss, divided by the
squared norm of the centered target matrix. Loosely speaking it is
a kind of “normalization” or “relativization” of the disparity in
the source and target that is captured by the oss.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
morphops.procrustes.remove_position(lmks, position=None)

	If position is None, remove_position() translates lmks such
that get_position() of translated_lmks is the origin. Else it is
the (get_position() of lmks) - position.

	Parameters

	lmks (array-like) – One of the following

	Single specimen A (p,k) array of p landmarks in k dimensions for
one specimen.

	n specimens A (n,p,k) array of n landmark sets for n specimens,
each having p landmarks in k dimensions.

	Returns

	translated_lmks –

	Single specimen If lmks is (p,k)-shaped, translated_lmks is
(p,k)-shaped such that the centroid of translated_lmks + position
= centroid of lmks. When position is None, it is taken to be the
centroid of lmks, which means translated_lmks is at the origin.

	n specimens If lmks is (n,p,k)-shaped, translated_lmks is
(n,p,k)-shaped such that the i-th element of translated_lmks is
related to the i-th specimen of lmks by a translation calculated as
per the single specimen case.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
morphops.procrustes.remove_scale(lmks, scale=None)

	If scale is None, remove_scale() scales lmks such that
get_scale() of scaled_lmks is 1. Else it is (get_scale() of
lmks)/scale.

Note

lmks is not assumed to have been pre-centered. To pre-center lmks you
can call remove_position() on lmks before applying remove_scale.

	Parameters

	lmks (array-like) – One of the following

	Single specimen A (p,k) array of p landmarks in k dimensions for
one specimen.

	n specimens A (n,p,k) array of n landmark sets for n specimens,
each having p landmarks in k dimensions.

	Returns

	scaled_lmks –

	Single specimen If lmks is (p,k)-shaped, scaled_lmks is
(p,k)-shaped such that the norm of scaled_lmks x scale
= norm of lmks. When scale is None, it is taken to be the
norm of lmks, which means scaled_lmks has norm 1.

	n specimens If lmks is (n,p,k)-shaped, scaled_lmks is
(n,p,k)-shaped such that the i-th element of scaled_lmks is
related to the i-th specimen of lmks by a scaling calculated as
per the single specimen case.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
morphops.procrustes.rotate(source, target, no_reflect=False)

	Rotates the landmark set source so as to minimize its sum of squared interlandmark distances to target.

Say X=`source` and Y=`target`. By default rotate() tries to find

\[\operatorname*{argmin}_{R \in O(k)} \| Y - XR \|^2\]

That is, if no_reflect is False, rotate() might possibly reflect
X if it would achieve better alignment to Y. This behavior can be switched
off by setting no_reflect to True, in which case X will be aligned to Y
using a pure rotation \(R \in SO(k)\).

References

1. Sorkine-Hornung, Olga, and Michael Rabinovich. “Least-squares rigid motion using svd.” no 3 (2017): 1-5.
I found a pdf here [https://igl.ethz.ch/projects/ARAP/svd_rot.pdf].

	Parameters

	
	source (array-like) – A (p,k)-shaped landmark set corresponding to the source shape.

	target (array-like) – A (p,k)-shaped landmark set corresponding to the target shape.

	no_reflect (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether the best alignment should exclude reflection
(default is False, which means reflection will be used if it achieves
better alignment).

	Returns

	result –

	aligned: numpy.ndarray

	A (p,k)-shaped landmark set consisting of the source landmarks
rotated to the target.

	R: numpy.ndarray

	A (k,k)-shaped array representing the right rotation matrix by
which source is rotated.

	D: numpy.ndarray

	A (k,)-shaped array representing the diagonal matrix of the SVD of np.dot(target.T, source).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

morphops.tps

Provides thin-plate splines related operations and algorithms.

Given two sets of points, the thin-plate spline can interpolate from one to the
other in a manner that minimizes the “integral bending norm”[bookstein89].

Importantly, it has a remarkable connection to Kendall’s shape space in the
following way: The non-zero eigenvectors of the bending energy matrix form an
orthonormal basis in the tangent space of shape coordinates [bookstein96].

References

	bookstein89

	Bookstein, F.L., 1989. Principal warps: Thin-plate splines
and the decomposition of deformations. IEEE Transactions on pattern
analysis and machine intelligence, 11(6), pp.567-585.

	bookstein96

	Bookstein, F.L., 1996. Biometrics, biomathematics and the
morphometric synthesis. Bulletin of mathematical biology, 58(2), p.313.

	
morphops.tps.K_matrix(X, Y=None)

	Calculates the upper-right (p,p) submatrix of the (p+k+1,p+k+1)-shaped
L matrix.

	Parameters

	
	X ((p,2) or (p,3) shaped array-like) – A (p,k) array of p points in k=2 or k=3 dimensions.

	Y ((m,2) or (m,3) shaped array-like, optional) – A (m,k) array of p points in k=2 or k=3 dimensions. Y must have the
same k as X.

If Y is None, it is just set to X.

	Returns

	K – A (p,p) array where the element at [i,j] is \(U(\|X_i - Y_j\|)\). The definition of U depends on k.

In particular, if k = 2, then \(U(r) = r^2 \log(r^2)\), else
\(U(r) = r\).

Note: Using \(\alpha U(r)\) instead of \(U(r)\) for some
\(\alpha \in \mathbb{R}\) will not change the calculated spline.
Simple block matrix inverse formulae show that when calculating \(L^{-1}\)
for the spline using \(\alpha U(r)\), the non-uniform coefficients
multiplied to the \(U\) terms will be scaled by \(\frac{1}{\alpha}\)
while the uniform coefficients will stay the same.

	Return type

	np.ndarray

	
morphops.tps.L_matrix(X)

	Makes the (p+k+1,p+k+1)-shaped L matrix that gets inverted when
calculating the thin-plate spline “from” X.

	Parameters

	X ((p,2) or (p,3) shaped array-like) – A (p,k) array of p landmarks in k=2 or k=3 dimensions for one specimen.

	Returns

	L – A (p+k+1,p+k+1) array of the form [[K | P][P.T | 0]].

	Return type

	np.ndarray

	
morphops.tps.P_matrix(X)

	Makes the minor diagonal submatrix P of the (p+k+1,p+k+1)-shaped L
matrix.

Basically just stacks a column of 1s before the coordinate columns in X.

	Parameters

	X ((p,2) or (p,3) shaped array-like) – A (p,k) array of p points in k=2 or k=3 dimensions.

	Returns

	P – A (p,k+1) array, which is 1 in the first column, and exactly X in the
remaining columns.

	Return type

	np.ndarray

	
morphops.tps.bending_energy_matrix(X)

	Returns the upper right (pxp) submatrix of L^(-1).

	Parameters

	X ((p,2) or (p,3) shaped array-like) – A (p,k) array of p landmarks in k=2 or k=3 dimensions for one specimen.

	Returns

	L_inv – The upper right (p,p) submatrix of the inverse of the L_matrix of X.

	Return type

	np.ndarray

	
morphops.tps.tps_coefs(X, Y)

	Finds the thin-plate spline coefficients for the thin-plate spline
function that interpolates from X to Y.

	Parameters

	
	X ((p,2) or (p,3) shaped array-like) – A (p,k) array of p points in k=2 or k=3 dimensions.

	Y ((p,2) or (p,3) shaped array-like) – A (p,k) array of p points in k=2 or k=3 dimensions. Y must have the
same shape as X.

	Returns

	
	W (np.ndarray) – A (p,k) array of weights for the non-affine part of the spline.

	A (np.ndarray) – A (k+1,k) array of weights for the affine part of the spline.

	
morphops.tps.tps_warp(X, Y, pts)

	Maps points pts to their image under the thin-plate spline function generated by tps_coefs() of X and Y.

	Parameters

	
	X ((p,2) or (p,3) shaped array-like) – A (p,k) array of p points in k=2 or k=3 dimensions.

	Y ((p,2) or (p,3) shaped array-like) – A (p,k) array of p points in k=2 or k=3 dimensions. Y must have the
same shape as X.

	pts ((m,2) or (m,3) shaped array-like, optional) – A (m,k) array of m points in k=2 or k=3 dimensions. pts must have the
same coordinate dimensions k as X.

	Returns

	warped_pts – A (m,k) array of points corresponding to the image of pts under the thin-plate spline produced by X, Y.

	Return type

	(m,2) or (m,3) shaped array-like, optional

morphops.io

Provides IO functions to read from and write to files in common landmark data
file formats.

	
exception morphops.io.MopsFileReadError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception morphops.io.MopsFileWriteError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
morphops.io.read_dta(filename)

	Reads *.dta files, as written by the IDAV Landmark Editor.

dta files typically have the following structure.

	Few comment lines. Comment lines start with a quotation mark (’ or “).

	A header with structure “1 nL pk 1 9999 Dim=k”. Here

	n is the number of specimens or number of landmark sets

	L in “nL” indicates that the file has specimen labels - assumed true

	p is the number of landmarks per landmark set

	k is the number of coordinates of each landmark (usually 2 or 3)

The “1 9999” are ignored (but expected to exist) when reading. This is
because those two numbers are a misapplication of the NTS format, which
the DTA format is based on. Per the NTS format, the interpretation of
the “1 9999” is that the file has missing data indicated by 9999.
DTA files always contain the “1 9999” numbers, regardless of whether the
file actually has missing data.

	n lines, each corresponding to the label of 1 specimen.

	n blocks of p lines. Each line contains k numbers. These correspond to
p k-D landmarks in each of the n specimens specified in the order of
appearance of their names in the preceding section.

	
morphops.io.write_dta(filename, lmk_sets, names=[])

	Writes *.dta files, as written by the IDAV Landmark Editor.

See also

	read_dta()

	For an explanation of the *.dta format.

morphops.lmk_util

Provides common functions used in the module.

	
morphops.lmk_util.distance_matrix(X, Y)

	For (p1,k)-shaped X and (p2,k)-shaped Y, returns the (p1,p2) matrix
where the element at [i,j] is the distance between X[i,:] and Y[j,:].

	
morphops.lmk_util.num_coords(X)

	Returns the number of coordinates per landmark k in X.

X can be

	a 1-D tensor of shape (k,) corresponding to a landmark point having k
coordinates.

	a 2-D tensor of shape (p,k) corresponding to a landmark set of p
landmarks, each having k coordinates, or

	a 3-D tensor of shape (n,p,k) corresponding to a set of n landmark sets,
each containing p landmarks, each having k coordinates.

	
morphops.lmk_util.num_lmk_sets(X)

	Returns the number of landmark sets n in X.

X must be a 3-D tensor of shape (n,p,k) corresponding to a set of
n landmark sets.

	
morphops.lmk_util.num_lmks(X)

	Returns the number of landmarks per set p in X.

X can be

	a 2-D tensor of shape (p,k) corresponding to a landmark set of p
landmarks, or

	a 3-D tensor of shape (n,p,k) corresponding to a set of n landmark sets,
each containing p landmarks.

	
morphops.lmk_util.ssqd(X)

	Returns the average sum of squared norms of pairwise differences
between all lmk sets in X.

	
morphops.lmk_util.transpose(X)

	Swaps the last two axes of a N-D tensor.

So for a 2-D matrix, this returns the transpose.
For a 3-D tensor of length n, this returns the array of n
transposed matrices.

Changelog

Morphops implements common operations and algorithms for Geometric
Morphometrics, in Python 3.

All notable changes to this project will be documented in this file. The format is based
on Keep a Changelog [https://keepachangelog.com/en/1.1.0].

Contributors to each release are listed in alphabetical order by first name. List
entries are sorted in descending chronological order.

Unreleased

Added

	This project now keeps a changelog.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 morphops	

 	
 	
 morphops.io	

 	
 	
 morphops.lmk_util	

 	
 	
 morphops.procrustes	

 	
 	
 morphops.tps	

Index

 B
 | D
 | G
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

B

 	
 	bending_energy_matrix() (in module morphops.tps)

D

 	
 	distance_matrix() (in module morphops.lmk_util)

G

 	
 	get_position() (in module morphops.procrustes)

 	get_scale() (in module morphops.procrustes)

 	
 	get_ssqd() (in module morphops.procrustes)

 	gpa() (in module morphops.procrustes)

K

 	
 	K_matrix() (in module morphops.tps)

L

 	
 	L_matrix() (in module morphops.tps)

M

 	
 	MopsFileReadError

 	MopsFileWriteError

 	morphops (module)

 	
 	morphops.io (module)

 	morphops.lmk_util (module)

 	morphops.procrustes (module)

 	morphops.tps (module)

N

 	
 	num_coords() (in module morphops.lmk_util)

 	
 	num_lmk_sets() (in module morphops.lmk_util)

 	num_lmks() (in module morphops.lmk_util)

O

 	
 	opa() (in module morphops.procrustes)

P

 	
 	P_matrix() (in module morphops.tps)

R

 	
 	read_dta() (in module morphops.io)

 	remove_position() (in module morphops.procrustes)

 	
 	remove_scale() (in module morphops.procrustes)

 	rotate() (in module morphops.procrustes)

S

 	
 	ssqd() (in module morphops.lmk_util)

T

 	
 	tps_coefs() (in module morphops.tps)

 	
 	tps_warp() (in module morphops.tps)

 	transpose() (in module morphops.lmk_util)

V

 	
 	VERSION (in module morphops)

W

 	
 	with_traceback() (morphops.io.MopsFileReadError method)

 	(morphops.io.MopsFileWriteError method)

 	
 	write_dta() (in module morphops.io)

 All modules for which code is available

	morphops.io

	morphops.lmk_util

	morphops.procrustes

	morphops.tps

 Source code for morphops.io

"""Provides IO functions to read from and write to files in common landmark data
file formats.
"""

import numpy as np
import morphops.lmk_util as lmk_util

[docs]class MopsFileReadError(Exception):
 pass

[docs]class MopsFileWriteError(Exception):
 pass

[docs]def read_dta(filename):
 r"""Reads *.dta files, as written by the IDAV Landmark Editor.

 dta files typically have the following structure.

 1. Few comment lines. Comment lines start with a quotation mark (' or ").

 2. A header with structure "1 nL pk 1 9999 Dim=k". Here

 1. n is the number of specimens or number of landmark sets
 2. L in "nL" indicates that the file has specimen labels - assumed true
 3. p is the number of landmarks per landmark set
 4. k is the number of coordinates of each landmark (usually 2 or 3)

 The "1 9999" are ignored (but expected to exist) when reading. This is
 because those two numbers are a misapplication of the NTS format, which
 the DTA format is based on. Per the NTS format, the interpretation of
 the "1 9999" is that the file has missing data indicated by 9999.
 DTA files always contain the "1 9999" numbers, regardless of whether the
 file actually has missing data.

 3. n lines, each corresponding to the label of 1 specimen.
 4. n blocks of p lines. Each line contains k numbers. These correspond to
 p k-D landmarks in each of the n specimens specified in the order of
 appearance of their names in the preceding section.

 Todo

 Make implementation less non-pythonic if possible, while not allowing errors to go undetected.
 """
 did_header = False
 names = []
 pts = []
 curr_line_i = -1
 with open(filename, 'r') as f:
 for line in f:
 curr_line_i += 1
 line = str.strip(line)
 # If line is empty or starts with quote, continue
 if len(line) == 0 or \
 line.startswith("\'") or line.startswith("\""):
 continue
 # If line indicates rectangular matrix and header not yet done,
 # we have a header. Eg- "1 2L 30 1 9999 Dim=3"
 if line.startswith("1") and not did_header:
 header_els = line.split()
 if len(header_els) != 6:
 raise MopsFileReadError("Error in line {}. A .dta file "
 "header must have 6 parts.".format(curr_line_i))
 # Item 1 is the n_lmk_sets, followed by L or l
 n = int(header_els[1].replace('L','').replace('l',''))
 # Item 2 is the n_lmks*n_coords
 pk = int(header_els[2])
 # Item 5 contains the dimensions k.
 k = int((header_els[5]).lower().replace('dim=', ''))
 p = pk//k
 did_header = True
 continue

 # Read the lmk set names
 if len(names) < n:
 names.append(line)
 continue

 # Read in the coords
 coords = line.split()
 if len(coords) is not k:
 raise MopsFileReadError("Error in line {}. Could not parse the "
 "coordinates {}".format(curr_line_i, line))
 coords = np.array(coords).astype(np.float64)
 pts.append(coords)

 # Reshape into a n x p x k tensor
 lmk_sets = np.array(pts).reshape((n, p, k))
 return lmk_sets, names

[docs]def write_dta(filename, lmk_sets, names=[]):
 r"""Writes *.dta files, as written by the IDAV Landmark Editor.

 See also

 read_dta: For an explanation of the *.dta format.

 Todo

 Make implementation less non-pythonic if possible, without letting errors
 slip through without raising.
 """
 n = lmk_util.num_lmk_sets(lmk_sets)
 p = lmk_util.num_lmks(lmk_sets)
 k = lmk_util.num_coords(lmk_sets)

 with open(filename, 'w+') as f:
 # Write some comments
 f.write("\'DTA file written by morphops\n")
 f.write("\n")
 # Write header
 header_els = [1, n, p*k, 1, 9999,
 ''.join(np.array(['Dim=',k]).astype(str))]
 header = ' '.join(np.array(header_els).astype(str))
 f.write(header + "\n")
 f.write("\n")
 # Write the names. Missing names are populated as 'InsertName{ID}',
 # where ID goes from [len(names) + 1, n + 1).
 rem_names_ids = np.arange(len(names)+1,n+1).astype(str)
 rem_names = np.core.char.add('InsertName', rem_names_ids)
 names = np.append(names, rem_names)
 for name in names:
 f.write(name + "\n")

 # Write the coordinates
 for i in range(n):
 f.write("\n")
 for j in range(p):
 lmk = np.array(lmk_sets[i, j, 0:k])
 lmkstr = np.array2string(lmk, precision=20)
 lmkstr = lmkstr.replace('[','').replace(']','').strip()
 f.write(lmkstr + "\n")

 Source code for morphops.lmk_util

"""Provides common functions used in the module.
"""

import numpy as np
from scipy.spatial.distance import cdist

[docs]def num_lmk_sets(X):
 """Returns the number of landmark sets n in `X`.

 `X` must be a 3-D tensor of shape (n,p,k) corresponding to a set of
 n landmark sets.
 """
 if len(np.shape(X)) != 3:
 raise ValueError("The input X must be a 3-D tensor of shape "
 "(n x p x k) corresponding to n landmark sets, each consisting "
 "of p landmarks in k dimensions.")
 return np.shape(X)[0]

[docs]def num_lmks(X):
 """Returns the number of landmarks per set p in `X`.

 `X` can be

 * a 2-D tensor of shape (p,k) corresponding to a landmark set of p
 landmarks, or

 * a 3-D tensor of shape (n,p,k) corresponding to a set of n landmark sets,
 each containing p landmarks.

 """
 X_shape = np.shape(X)
 X_d_sz = len(X_shape)
 if X_d_sz < 2:
 raise ValueError("The input X must be a 2-D or 3-D tensor.")
 return X_shape[X_d_sz - 2]

[docs]def num_coords(X):
 """Returns the number of coordinates per landmark k in `X`.

 `X` can be

 * a 1-D tensor of shape (k,) corresponding to a landmark point having k
 coordinates.

 * a 2-D tensor of shape (p,k) corresponding to a landmark set of p
 landmarks, each having k coordinates, or

 * a 3-D tensor of shape (n,p,k) corresponding to a set of n landmark sets,
 each containing p landmarks, each having k coordinates.
 """
 X_shape = np.shape(X)
 X_d_sz = len(X_shape)
 if X_d_sz < 1:
 raise ValueError("The input X must be a 1-D, 2-D or 3-D tensor.")
 return X_shape[X_d_sz - 1]

[docs]def transpose(X):
 """Swaps the last two axes of a N-D tensor.

 So for a 2-D matrix, this returns the transpose.
 For a 3-D tensor of length `n`, this returns the array of `n`
 transposed matrices.
 """
 X_d_sz = len(np.shape(X))
 if (X_d_sz < 2):
 return X
 return np.swapaxes(X, X_d_sz - 2, X_d_sz - 1)

[docs]def ssqd(X):
 """Returns the average sum of squared norms of pairwise differences
 between all lmk sets in X.
 """
 n_lmk_sets = num_lmk_sets(X)
 if (n_lmk_sets < 2):
 raise ValueError("The input X must contain atleast 2 landmark sets.")
 ssq = 0
 for i in np.arange(n_lmk_sets - 1):
 ssq += np.sum(np.square(X[i:] - X[i]))
 return ssq*1.0/n_lmk_sets

[docs]def distance_matrix(X, Y):
 """For (p1,k)-shaped X and (p2,k)-shaped Y, returns the (p1,p2) matrix
 where the element at [i,j] is the distance between X[i,:] and Y[j,:].
 """
 return cdist(X, Y)

 Source code for morphops.procrustes

"""Provides procrustes alignment related operations and algorithms.

For geometric morphometrics based studies, after landmark data are
collected for each specimen, a typical next step is to remove the position,
size and orientation information from the landmark set of each specimen so
that what remains is the shape information. This can be achieved by, for
example, running Generalized Procrustes Aligment (see :func:`gpa()`) on the set
of landmark sets.

After procrustes alignment, the shapes lie in a high-dimensional non-euclidean
manifold but are usually quite close to each other and can be projected to a
euclidean tangent space at their shape mean, whereupon they can be subjected to
multivariate analysis techniques like Principal Components Analysis, Partial
Least Squares, etc.
"""

import numpy as np
import math
import morphops.lmk_util as lmk_util
import warnings

[docs]def get_position(lmks):
 """Returns the centroid of the set or sets of landmarks in `lmks`.

 The centroid of a :math:`p` landmarks is simply the arithmetic mean of all
 the landmark positions. That is

 .. math:: \mathbf{x_c} = \sum_{i=1}^p \dfrac{\mathbf{x_i}}{p}

 Parameters

 lmks : array-like

 One of the following

 * **Single specimen** A (p,k) array of p landmarks in k dimensions for
 one specimen.

 * **n specimens** A (n,p,k) array of n landmark sets for n specimens,
 each having p landmarks in k dimensions.

 Returns

 centroid : numpy.ndarray

 * If `lmks` is a (p,k) array, then `centroid` is a (k,)-shaped array,
 whose i-th element is the mean of the i-th coordinate in `lmks`.

 * If `lmks` is a (n,p,k) array, then `centroid` is a (n,k)-shaped
 array whose i-th element is the (k,)-shaped centroid of the i-th
 specimen's landmarks in `lmks`.
 """
 lmks_shape_dim = len(np.shape(lmks))
 if (lmks_shape_dim != 2) and (lmks_shape_dim !=3):
 raise ValueError("Input lmks must have either 2 size dimensions for a single specimen or 3 size dimensions for multiple specimens. Instead got {dims:d}.".format(dims=lmks_shape_dim))
 axis = lmks_shape_dim - 2
 return np.asarray(np.nanmean(lmks, axis=axis))

[docs]def get_scale(lmks):
 """Returns the euclidean norm of the real matrix or matrices in `lmks`.

 The euclidean norm of the real (p x k) matrix :math:`X` is calculated as

 .. math:: \|X\| = \sqrt{Tr(X^T X)}

 Note

 `lmks` is not assumed to have been pre-centered. To pre-center `lmks` you
 can call :func:`remove_position` on `lmks` before applying `remove_scale`.

 Todo

 1. Check the literature to see if this is indeed meant to be the euclidean norm as opposed to the frobenius norm (I imagine it only differs if data is complex).

 Parameters

 lmks : array-like

 One of the following

 * **Single specimen** A (p,k) array of p landmarks in k dimensions for
 one specimen.

 * **n specimens** A (n,p,k) array of n landmark sets for n specimens,
 each having p landmarks in k dimensions.

 Returns

 scale : numpy.float64 or numpy.ndarray

 * **Single specimen** If `lmks` is (p,k)-shaped, `scale` is a float
 representing its euclidean norm.

 * **n specimens** If `lmks` is (n,p,k)-shaped, `scale` is an (n,)
 -shaped array such that the i-th element is the euclidean norm of the
 i-th specimen's landmarks.
 """
 lmks_shape_dim = len(np.shape(lmks))
 if (lmks_shape_dim != 2) and (lmks_shape_dim !=3):
 raise ValueError("Input lmks must have either 2 size dimensions for a single specimen or 3 size dimensions for multiple specimens. Instead got {dims:d}.".format(dims=lmks_shape_dim))
 axis = None if lmks_shape_dim == 2 else (1,2)
 return np.linalg.norm(lmks, axis=axis)

[docs]def remove_position(lmks, position=None):
 """If `position` is `None`, :func:`remove_position` translates `lmks` such
 that :func:`get_position()` of `translated_lmks` is the origin. Else it is
 the (:func:`get_position()` of `lmks`) - `position`.

 Parameters

 lmks : array-like

 One of the following

 * **Single specimen** A (p,k) array of p landmarks in k dimensions for
 one specimen.

 * **n specimens** A (n,p,k) array of n landmark sets for n specimens,
 each having p landmarks in k dimensions.

 Returns

 translated_lmks: numpy.ndarray

 * **Single specimen** If `lmks` is (p,k)-shaped, `translated_lmks` is
 (p,k)-shaped such that the centroid of `translated_lmks` + `position`
 = centroid of `lmks`. When `position` is None, it is taken to be the
 centroid of `lmks`, which means `translated_lmks` is at the origin.

 * **n specimens** If `lmks` is (n,p,k)-shaped, `translated_lmks` is
 (n,p,k)-shaped such that the i-th element of `translated_lmks` is
 related to the i-th specimen of `lmks` by a translation calculated as
 per the single specimen case.
 """
 lmks_shape_dim = len(np.shape(lmks))
 pos = np.array(position) if position is not None else get_position(lmks)
 if lmks_shape_dim == 2:
 return lmks - pos
 else:
 return lmks - pos[:, np.newaxis, :]

[docs]def remove_scale(lmks, scale=None):
 """If `scale` is `None`, :func:`remove_scale` scales `lmks` such that
 :func:`get_scale()` of `scaled_lmks` is 1. Else it is (:func:`get_scale` of
 `lmks`)/`scale`.

 Note

 `lmks` is not assumed to have been pre-centered. To pre-center `lmks` you
 can call :func:`remove_position` on `lmks` before applying `remove_scale`.

 Parameters

 lmks : array-like

 One of the following

 * **Single specimen** A (p,k) array of p landmarks in k dimensions for
 one specimen.

 * **n specimens** A (n,p,k) array of n landmark sets for n specimens,
 each having p landmarks in k dimensions.

 Returns

 scaled_lmks: numpy.ndarray

 * **Single specimen** If `lmks` is (p,k)-shaped, `scaled_lmks` is
 (p,k)-shaped such that the norm of `scaled_lmks` x `scale`
 = norm of `lmks`. When `scale` is `None`, it is taken to be the
 norm of `lmks`, which means `scaled_lmks` has norm 1.

 * **n specimens** If `lmks` is (n,p,k)-shaped, `scaled_lmks` is
 (n,p,k)-shaped such that the i-th element of `scaled_lmks` is
 related to the i-th specimen of `lmks` by a scaling calculated as
 per the single specimen case.
 """
 scale_ = scale if (scale is not None) else get_scale(lmks)
 lmks_shape = np.shape(lmks)
 num_lmksets = 1 if len(lmks_shape) == 2 else lmks_shape[0]
 scale_re = np.reshape(scale_, (num_lmksets,1,1))
 return np.reshape(np.divide(lmks, scale_re), lmks_shape)

[docs]def rotate(source, target, no_reflect=False):
 """Rotates the landmark set `source` so as to minimize its sum of squared interlandmark distances to `target`.

 Say X=`source` and Y=`target`. By default :func:`rotate` tries to find

 .. math:: \operatorname*{argmin}_{R \in O(k)} \| Y - XR \|^2

 That is, if `no_reflect` is `False`, :func:`rotate` might possibly reflect
 X if it would achieve better alignment to Y. This behavior can be switched
 off by setting `no_reflect` to `True`, in which case X will be aligned to Y
 using a pure rotation :math:`R \in SO(k)`.

 Todo

 1. Handle when values are NaN.

 References

 1. Sorkine-Hornung, Olga, and Michael Rabinovich. "Least-squares rigid motion using svd." no 3 (2017): 1-5.
 `I found a pdf here <https://igl.ethz.ch/projects/ARAP/svd_rot.pdf>`_.

 Parameters

 source : array-like
 A (p,k)-shaped landmark set corresponding to the source shape.

 target : array-like
 A (p,k)-shaped landmark set corresponding to the target shape.

 no_reflect : bool, optional
 Flag indicating whether the best alignment should exclude reflection
 (default is False, which means reflection will be used if it achieves
 better alignment).

 Returns

 result: dict
 aligned: numpy.ndarray
 A (p,k)-shaped landmark set consisting of the `source` landmarks
 rotated to the `target`.

 R: numpy.ndarray
 A (k,k)-shaped array representing the right rotation matrix by
 which `source` is rotated.

 D: numpy.ndarray
 A (k,)-shaped array representing the diagonal matrix of the SVD of np.dot(target.T, source).
 """
 result = {'aligned': None, 'R': None, 'D': None}
 # Get the (d x d) covariance between target and source.
 C = np.matmul(lmk_util.transpose(target), source)
 # Need argmax of tr(Y(XR)t) = tr(RYtX) = tr(RC). Let svd(C) = UDVt.
 U, D, VT = np.linalg.svd(C)
 V = lmk_util.transpose(VT)
 UT = lmk_util.transpose(U)
 # Then tr(RC) = tr(R(UDVt)) = tr(D(VtRU)). But M=VtRU is orthogonal and D is non-negative diagonal, so argmax occurs when M = I => R = VUt. We done?
 R = np.matmul(V, UT)
 # Well, the above R is not guaranteed to be in SO(d), only in O(d). det(R) is 1 when R is a rotation, else -1 when R is a reflection.
 detR = np.linalg.det(R)
 # Say det(R) = det(VUt) = -1. If we want to force det(R) = 1, then det(M) = det(VtRU) = det(R)*det(VUt) = -1.
 # So if R is constrained to be a rotation, M must be a reflection.
 ndet_i = detR < 0
 if no_reflect and np.any(ndet_i):
 # Notice argmax tr(DM) = sum d_ii*m_ii is a convex function f(m00, m11, ..) on the set of diagonals of reflection matrices. This set is the convex hull of E = (+-1,+-1,..), where the num of -1s is odd per A.Horn (1954). So f is maximized at a vertex in E, but where?
 ones = np.ones(lmk_util.num_coords(source))
 # Well every dii is non-negative, so assuming that dii are in descending order: argmax f has to be (1,1,..,1,-1).
 ones[-1] = -1
 # Say N = diag(1,1,..,-1).
 N = np.diag(ones)
 # Then M = VtRU = N => R = VNUt.
 R[ndet_i] = np.matmul(np.matmul(V[ndet_i], N), UT[ndet_i])
 # Also update D
 D[ndet_i] = np.multiply(D[ndet_i], ones)
 result['aligned'] = np.matmul(source, R)
 result['R'] = R
 result['D'] = D
 return result

[docs]def opa(source, target, do_scaling=False, no_reflect=False):
 """Performs Ordinary Procrustes Alignment to transform the landmark set
 `source` such that the squared Euclidean distance between `source` and
 `target` is minimized.

 Say X=`source` and Y=`target` and `do_scaling` = `True`.
 :func:`opa` tries to find

 .. math:: \operatorname*{argmin}_{\\beta > 0,\ R \in O(k),\ \gamma \in \mathbb{R}^k } D^2_{\mathtt{OPA}}(X, Y) = \| Y - \\beta X R - \mathbf{1_k} \gamma^T \|^2

 If `do_scaling` = `False`, :math:`\\beta = 1`. If `no_reflect` = `True`,
 then just as in :func:`rotate`, :func:`opa` will force :math:`R \in SO(k)`.

 The Ordinary (Procrustes) Sum of Squares or OSS is defined as

 .. math:: OSS(X, Y) = \operatorname*{min}_{\\beta > 0,\ R \in O(k),\ \gamma \in \mathbb{R}^k } D^2_{\mathtt{OPA}}(X, Y)

 Note

 Generally for :func:`opa`, :math:`OSS(X1, X2) \\neq OSS(X2, X1)`.

 In contrast to :func:`opa`, :func:`gpa` is symmetric for the input matrices
 in that :math:`G(X1, X2) = G(X2, X1)`.

 See Also

 rotate, gpa

 Parameters

 source : array-like
 A (p,k)-shaped landmark set corresponding to the source shape.

 target : array-like
 A (p,k)-shaped landmark set corresponding to the target shape.

 do_scaling : bool, optional
 Flag indicating whether the best alignment should also find the optimal
 :math:`\\beta` that minimizes :math:`D^2_{\mathtt{OPA}}`. The default
 value of `do_scaling` is False, which means :math:`\\beta = 1`, or in
 other words, `source` will not be scaled.

 no_reflect : bool, optional
 Flag indicating whether the best alignment should exclude reflection
 (default is False, which means reflection will be used if it achieves
 better alignment).

 Returns

 result: dict
 aligned: numpy.ndarray
 A (p,k)-shaped landmark set consisting of the `source` landmarks
 aligned to the `target`.

 b: numpy.float64 or int
 A number representing the scaling factor :math:`\\beta` by which
 `source` is scaled.

 R: numpy.ndarray
 A (k,k)-shaped array representing the right rotation matrix
 :math:`R` by which `source` is rotated.

 c: numpy.ndarray
 A (k,)-shaped array representing the displacement :math:`\gamma`
 between the centroids of `target` and the scaled+rotated `source`.

 oss: numpy.float64
 This number represents the Ordinary (Procrustes) Sum of Squares,
 which is the minimum of :math:`D^2_{\mathtt{OPA}}`. Essentially,
 the `oss` is the result of plugging in the optimal :math:`\\beta`,
 :math:`R` and :math:`\gamma` into the :math:`D^2_{\mathtt{OPA}}`
 objective.

 oss_stdized: numpy.float64
 This number is the Ordinary Sum of Squares `oss`, divided by the
 squared norm of the centered target matrix. Loosely speaking it is
 a kind of "normalization" or "relativization" of the disparity in
 the `source` and `target` that is captured by the `oss`.

 Todo

 * Handle degenerate source, target landmarks.

 * Handle fewer landmarks in source.

 """
 result = { 'oss': None, 'oss_stdized': None, 'b': None, 'R': None, 'c': None, 'aligned': None }
 # 1. Remove position information
 muX = get_position(source)
 X0 = remove_position(source, muX)
 muY = get_position(target)
 Y0 = remove_position(target, muY)
 # 2. Remove scale information
 X0_norm = get_scale(X0)
 Y0_norm = get_scale(Y0)
 X0 = remove_scale(X0, X0_norm)
 Y0 = remove_scale(Y0, Y0_norm)
 # 2.i. Also keep the squared norm.
 X0_ssq = np.square(X0_norm)
 Y0_ssq = np.square(Y0_norm)
 # 3. Rotate source to target
 rot_res = rotate(X0, Y0, no_reflect=no_reflect)
 result['R'] = rot_res['R']
 # For all further comments here, assume X, Y are centered.
 # 4. For scaling and OSS calculation, we note that
 # D^2_opa(X, Y) = ||Y - bXR - 1*c.T||^2 = tr(||Y||^2 + b^2||X||^2 - 2b*Y.T*X*R) + d*c.T*c.
 # Say X0, Y0 are preshapes (as is true here).
 # D^2 = tr(||Y||^2 + b^2||X||^2 - 2b*||Y||*||X||*Y0.T*X0*R) + d*c.T*c.
 # Diff wrt b gives dD^2/db = 2b*tr(X.T*X) - 2*tr(||Y||*||X||*Y0.T*X0*R)
 # So b = ||Y||*tr(Y0.T*X0*R)/||X|| = ||Y||*tr(U*D*V.T*V*U.T)/||X|| = ||Y||*tr(D)/||X||.
 traceD = np.sum(rot_res['D'])
 if do_scaling:
 result['b'] = (Y0_norm*traceD)/X0_norm
 # Also, cos(rho(X,Y)) = tr(D), and oss = ||Y^2||sin^2(rho(X,Y))
 # So oss = ||Y^2||(1-cos^2(rho(X,Y))) = ||Y^2||(1-tr(D)^2)
 # For standardized oss we divide by ||Y^2||.
 result['oss_stdized'] = 1 - (traceD*traceD)
 result['oss'] = Y0_ssq*result['oss_stdized']
 result['aligned'] = \
 remove_position(np.dot(Y0_norm*traceD*X0,result['R']), -muY)
 else:
 result['b'] = 1
 # The oss expression with a given b is
 # ||Y||^2 + 2*b^2*||X||^2 - 2*b*||X||*||Y||*cos(rho(X,Y))
 # Again for standardized oss we divide by ||Y^2||.
 result['oss_stdized'] = 1 + (X0_ssq/Y0_ssq) - (2*(X0_norm/Y0_norm)*traceD)
 result['oss'] = Y0_ssq*result['oss_stdized']
 result['aligned'] = \
 remove_position(np.dot(X0_norm*X0,result['R']), -muY)
 # c is the gap between centroids of bXR and Y.
 result['c'] = muY - result['b']*np.dot(muX, result['R'])

 return result

[docs]def gpa(X, tol=1e-5,max_iters=10, do_project=False, do_scaling=False,
 no_reflect=False, unitize_mean=False):
 """Performs Generalized Procrustes Alignment to transform all the landmark
 sets in `X` such that (a quantity proportional to) the sum of squared norms
 of pairwise differences between all the landmark sets is minimized.

 Say :code:`len(X) = n`. :func:`gpa` tries to find

 .. math:: \operatorname*{argmin}_{\\beta_i > 0,\ R_i \in O(k),\ \gamma_i \in \mathbb{R}^k } g(X) = \\frac{1}{n} \sum_{i=1}^{n-1} { \sum_{j=i+1}^n {\| (\\beta_i X_i R_i + \mathbf{1_k} \gamma_i^T) - (\\beta_j X_j R_j + \mathbf{1_k} \gamma_j^T) \|^2}}

 The Generalized (Procrustes) Sum of Squares or G is defined as

 .. math:: G(X) = \operatorname*{inf}_{\\beta_i > 0,\ R_i \in O(k),\ \gamma_i \in \mathbb{R}^k } g(X)

 The GPA algorithm, per [drymar]_, tries to iteratively rotate and scale the
 landmark sets in `X` until the sum of squared differences is below `tol`.
 While the algorithm should converge quite fast, it can be forced to stop
 the minimization loop after `max_iters` number of iterations.

 For an explanation of the other parameters, please see the Parameters
 section.

 Note

 Re `do_project` and `do_scaling`: The projection used here is based on
 [rohlf]_ and assumes that the aligned shapes are of unit centroid size,
 which is not generally true when `do_scaling` is `True`. Consequently, if
 both `do_project` and `do_scaling` are `True`, :func:`gpa` will issue a
 warning, but proceed with the projection.

 Note

 Generally for :func:`opa`, :math:`OSS(X1, X2) \\neq OSS(X2, X1)`.

 In contrast to :func:`opa`, :func:`gpa` is symmetric for the input matrices
 in that :math:`G(X1, X2) = G(X2, X1)`.

 See Also

 rotate, opa

 Parameters

 X : array-like
 A (n,p,k)-shaped set of landmark sets that have to be aligned to each
 other.

 tol : float, optional
 The sum of squared differences value that will be considered "low
 enough" by the iterative rotation and scaling. The iterations will
 continue until `tol` has been achieved or `max_iters` is reached,
 whichever comes first.

 max_iters : int, optional
 The maximum number of iterations that the iterative rotation and
 scaling is allowed to run for. The iterations will continue until `tol`
 has been achieved or `max_iters` is reached, whichever comes first.

 do_scaling : bool, optional
 If `False`, :math:`\\beta_i = \\frac{1}{\| X'_i \|}`, where
 :math:`X'_i` is the mean-centered :math:`X_i`. Else :math:`\\beta_i` is
 calculated as per [tenb]_.

 do_project: bool, optional
 If `True`, the final aligned landmarks are orthogonally projected to
 the tangent space at the mean of aligned landmark sets `mean`,
 using equation 1 in [rohlf]_.

 no_reflect : bool, optional
 Flag indicating whether the best alignment should exclude reflection
 (default is False, which means reflection will be used if it achieves
 better alignment).

 unitize_mean: bool, optional
 Flag indicating whether the mean of aligned landmark sets `mean`
 should be rescaled to have unit centroid size.

 Returns

 result: dict
 aligned: numpy.ndarray
 A (n,p,k)-shaped set of aligned landmark sets.

 mean: numpy.ndarray
 A (p,k)-shaped array representing the mean of the procrustes aligned landmark sets `aligned`.

 b: numpy.ndarray
 A (n,)-shaped array representing the scaling factor
 :math:`\\beta_i` by which the centered :math:`X'_i` is scaled.

 ssq: numpy.float64
 This number represents the Generalized (Procrustes) Sum of Squares,
 which is the infinimum of :math:`g`. Essentially,
 the `ssq` is the result of plugging in the optimal :math:`\\beta_i`,
 :math:`R_i` and :math:`\gamma_i` into the :math:`g` objective.

 Warns

 UserWarning
 If both `do_project` and `do_scaling` are `True`

 References

 .. [drymar] Dryden, I.L. and Mardia, K.V., 1998. Statistical shape analysis.
 .. [tenb] Ten Berge, J.M., 1977. Orthogonal Procrustes rotation for two or
 more matrices. Psychometrika, 42(2), pp.267-276.
 .. [rohlf] Rohlf, F.J., 1999. Shape statistics: Procrustes superimpositions
 and tangent spaces. Journal of Classification, 16(2), pp.197-223.

 Todo

 * Handle degenerate source, target landmarks.

 * Handle fewer landmarks in source.

 """
 res = {'aligned': None, 'mean': None, 'b': None, 'ssq': None}
 n_lmk_sets = lmk_util.num_lmk_sets(X)
 n_lmks = lmk_util.num_lmks(X)
 n_coords = lmk_util.num_coords(X)

 # 1. Remove position
 muX = get_position(X)
 X0 = remove_position(X, muX)

 # 2. Remove scale (if not do_scaling, we're just doing partial procrustes)
 X0_norm = get_scale(X0)
 X0 = remove_scale(X0, X0_norm)
 b = np.reciprocal(X0_norm)

 # 3. Rotate all lmk sets to the mean of all other lmk sets. Scale.
 aligned = X0
 ssq, ssq_old = None, None
 curr_iter = 0
 all_i = np.arange(n_lmk_sets)

 def is_ssq_ok():
 return ((ssq is not None) and (ssq_old is not None) and
 ((ssq_old - ssq) >= 0) and
 ((ssq_old - ssq) <= tol))

 while (not is_ssq_ok()) and (curr_iter < max_iters):
 # 3.1. Rotate
 while(not is_ssq_ok()):
 ssq_old = ssq
 for i in range(n_lmk_sets):
 # Get the mean of all but the ith lmk set
 all_but_i = aligned[all_i != i]
 mean_for_i = (1.0/(n_lmk_sets-1))*np.sum(all_but_i, axis=0)
 # Rotate all lmk sets to this mean
 aligned = rotate(aligned, mean_for_i, no_reflect)['aligned']
 ssq = get_ssqd(aligned)

 # 3.2. Scale
 if do_scaling:
 # We first get the biggest eigvec the nxn corr matrix.
 aligned_vecd = np.reshape(aligned, (n_lmk_sets, n_coords*n_lmks))
 X0_corrcoef = np.corrcoef(aligned_vecd)
 eig_vals, eig_vecs = np.linalg.eigh(X0_corrcoef)
 sort_perm = eig_vals.argsort()
 phi = eig_vecs[:, sort_perm][:, -1]
 if np.all(phi < 0):
 phi = np.abs(phi) # TODO: Is this okay to do?
 # The scale beta_i = sqrt(sum of sqd norms/ith sqd norm)*phi[i]
 aligned_norm = get_scale(aligned)
 aligned_ssq_norm = np.sqrt(np.sum(np.square(aligned)))
 frac = np.reciprocal(aligned_norm, dtype=np.float64)*aligned_ssq_norm
 beta = np.multiply(frac, phi)
 # Rescale aligned[i] by b_i
 aligned = np.multiply(aligned, np.reshape(beta, (n_lmk_sets,1,1)))
 # Update b
 b = np.multiply(b, beta)

 ssq = get_ssqd(aligned)
 curr_iter += 1

 print("ssq diff", ssq_old - ssq)

 # The mean is just the mean of the procrustes aligned lmk sets.
 mean = (1.0/n_lmk_sets)*np.sum(aligned, axis=0)
 if unitize_mean:
 mean = remove_scale(mean)

 if do_project:
 if do_scaling:
 w_msg = ("`do_project` assumes that the aligned lmk sets are scaled to have unit centroid size, which is not guaranteed if `do_scaling`. Proceeding with projection using the non-unit size lmk sets. See \'Rohlf, F. J. (1999). Shape statistics: Procrustes superimpositions and tangent spaces.\'")
 warnings.warn(w_msg)
 XC = mean.reshape((1, n_coords*n_lmks))
 X = aligned.reshape((n_lmk_sets, n_coords*n_lmks))
 # Get the projection matrix to project a shape onto X_c.
 XC_proj = (1.0/(XC @ XC.T)) * (XC.T @ XC)
 # Project all shapes onto the subspace orthogonal to X_c.
 X_tan = X @ (np.identity(n_coords*n_lmks) - XC_proj)
 # The above are like coordinates in the tangent space.
 # To get the "icons", we add back the mean.
 aligned = (X_tan + XC).reshape((n_lmk_sets, n_lmks, n_coords))
 # Recalculate the ssq
 ssq = get_ssqd(aligned)
 print("ssq diff", ssq_old - ssq)

 res['aligned'] = aligned
 res['mean'] = mean
 res['b'] = b
 res['ssq'] = ssq
 return res

[docs]def get_ssqd(X):
 """Alias for `lmk_util.ssqd(X)`.
 """
 return lmk_util.ssqd(X)

 Source code for morphops.tps

"""Provides thin-plate splines related operations and algorithms.

Given two sets of points, the thin-plate spline can interpolate from one to the
other in a manner that minimizes the "integral bending norm"[bookstein89]_.

Importantly, it has a remarkable connection to Kendall's shape space in the
following way: The non-zero eigenvectors of the bending energy matrix form an
orthonormal basis in the tangent space of shape coordinates [bookstein96]_.

References

.. [bookstein89] Bookstein, F.L., 1989. Principal warps: Thin-plate splines
 and the decomposition of deformations. IEEE Transactions on pattern
 analysis and machine intelligence, 11(6), pp.567-585.
.. [bookstein96] Bookstein, F.L., 1996. Biometrics, biomathematics and the
 morphometric synthesis. Bulletin of mathematical biology, 58(2), p.313.
"""

import numpy as np
import math
import morphops.lmk_util as lmk_util
import warnings

[docs]def K_matrix(X, Y=None):
 """Calculates the upper-right (p,p) submatrix of the (p+k+1,p+k+1)-shaped
 L matrix.

 Parameters

 X : (p,2) or (p,3) shaped array-like

 A (p,k) array of p points in k=2 or k=3 dimensions.

 Y : (m,2) or (m,3) shaped array-like, optional
 A (m,k) array of p points in k=2 or k=3 dimensions. `Y` must have the
 same k as `X`.

 If `Y` is `None`, it is just set to `X`.

 Returns

 K : np.ndarray
 A (p,p) array where the element at [i,j] is :math:`U(\|X_i - Y_j\|)`. The definition of U depends on k.

 In particular, if k = 2, then :math:`U(r) = r^2 \log(r^2)`, else
 :math:`U(r) = r`.

 Note: Using :math:`\\alpha U(r)` instead of :math:`U(r)` for some
 :math:`\\alpha \in \mathbb{R}` will not change the calculated spline.
 Simple block matrix inverse formulae show that when calculating :math:`L^{-1}`
 for the spline using :math:`\\alpha U(r)`, the non-uniform coefficients
 multiplied to the :math:`U` terms will be scaled by :math:`\\frac{1}{\\alpha}`
 while the uniform coefficients will stay the same.
 """
 num_coords = lmk_util.num_coords(X)
 if (num_coords != 2) and (num_coords != 3):
 raise ValueError("The input matrix must have landmarks with "
 "coordinates in either 2 or 3 dimensions.")
 if Y is None:
 Y = X
 r = lmk_util.distance_matrix(X, Y)
 if (num_coords == 2):
 r_sqd = np.square(r)
 # Make a copy of r_sqd where 0->1. This copy will be passed to log.
 # This way log(1) will be 0 and we wont get NaN and warnings.
 r_sqd_cl = np.copy(r_sqd)
 r_sqd_cl[np.isclose(r_sqd_cl,0)] = 1
 return np.multiply(r_sqd, np.log(r_sqd_cl))
 # else num_coords is 3
 return r

[docs]def P_matrix(X):
 """Makes the minor diagonal submatrix P of the (p+k+1,p+k+1)-shaped L
 matrix.

 Basically just stacks a column of 1s before the coordinate columns in `X`.

 Parameters

 X : (p,2) or (p,3) shaped array-like
 A (p,k) array of p points in k=2 or k=3 dimensions.

 Returns

 P : np.ndarray
 A (p,k+1) array, which is 1 in the first column, and exactly `X` in the
 remaining columns.
 """
 ones = np.ones(lmk_util.num_lmks(X))
 return np.column_stack((ones, X))

[docs]def L_matrix(X):
 """Makes the (p+k+1,p+k+1)-shaped L matrix that gets inverted when
 calculating the thin-plate spline "from" `X`.

 Parameters

 X : (p,2) or (p,3) shaped array-like
 A (p,k) array of p landmarks in k=2 or k=3 dimensions for one specimen.

 Returns

 L : np.ndarray
 A (p+k+1,p+k+1) array of the form [[K | P][P.T | 0]].
 """
 n_coords = lmk_util.num_coords(X)
 n_lmks = lmk_util.num_lmks(X)
 K = K_matrix(X)
 P = P_matrix(X)
 L = np.zeros((n_lmks + n_coords + 1, n_lmks + n_coords + 1))
 L[0:n_lmks,0:n_lmks] = K
 L[0:n_lmks,n_lmks:] = P
 L[n_lmks:,0:n_lmks] = np.transpose(P)
 return L

[docs]def bending_energy_matrix(X):
 """Returns the upper right (pxp) submatrix of L^(-1).

 Parameters

 X : (p,2) or (p,3) shaped array-like
 A (p,k) array of p landmarks in k=2 or k=3 dimensions for one specimen.

 Returns

 L_inv : np.ndarray
 The upper right (p,p) submatrix of the inverse of the `L_matrix` of `X`.
 """
 n_lmks = lmk_util.num_lmks(X)
 L = L_matrix(X)
 L_inv = np.linalg.inv(L)
 return L_inv[0:n_lmks,0:n_lmks]

[docs]def tps_coefs(X, Y):
 """Finds the thin-plate spline coefficients for the thin-plate spline
 function that interpolates from X to Y.

 Parameters

 X : (p,2) or (p,3) shaped array-like
 A (p,k) array of p points in k=2 or k=3 dimensions.

 Y : (p,2) or (p,3) shaped array-like
 A (p,k) array of p points in k=2 or k=3 dimensions. `Y` must have the
 same shape as `X`.

 Returns

 W : np.ndarray
 A (p,k) array of weights for the non-affine part of the spline.

 A : np.ndarray
 A (k+1,k) array of weights for the affine part of the spline.
 """
 n_coords = lmk_util.num_coords(X)
 n_lmks = lmk_util.num_lmks(X)
 Y_0 = np.row_stack((Y, np.zeros((n_coords+1,n_coords))))
 L = L_matrix(X)
 Q = np.linalg.solve(L, Y_0)
 if np.any(np.isnan(Q)):
 raise ValueError("The result of L_inv*Y contained NaN values.")
 # return W and A.
 return Q[0:n_lmks], Q[n_lmks:]

[docs]def tps_warp(X, Y, pts):
 """Maps points `pts` to their image under the thin-plate spline function generated by :func:`tps_coefs` of `X` and `Y`.

 Parameters

 X : (p,2) or (p,3) shaped array-like
 A (p,k) array of p points in k=2 or k=3 dimensions.

 Y : (p,2) or (p,3) shaped array-like
 A (p,k) array of p points in k=2 or k=3 dimensions. `Y` must have the
 same shape as `X`.

 pts : (m,2) or (m,3) shaped array-like, optional
 A (m,k) array of m points in k=2 or k=3 dimensions. `pts` must have the
 same coordinate dimensions k as `X`.

 Returns

 warped_pts : (m,2) or (m,3) shaped array-like, optional
 A (m,k) array of points corresponding to the image of `pts` under the thin-plate spline produced by `X`, `Y`.
 """
 W, A = tps_coefs(X, Y)
 U = K_matrix(pts, X)
 P = P_matrix(pts)
 # The warped pts are the affine part + the non-uniform part
 return np.matmul(P,A) + np.matmul(U,W)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Morphops!

 		
 morphops.procrustes

 		
 morphops.tps

 		
 morphops.io

 		
 morphops.lmk_util

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

